Second Periodical, January 2022 B.E. (Chemical Engg) III^{rd} year , V^{th} sem. Chemical Reaction Engineering – I

M.M.: 20 Time: 60 mins *Note:*

- Mention your Roll number, class and name at the top of all the pages/answer sheets. Put your signatures on the right bottom of each sheet.
- Scan all the pages/answer sheets as a single pdf file and upload the same in the Google form of Google Classroom.
- Attempt all questions.
- I. When aqueous A and aqueous B ($C_{A0} = C_{B0}$) are brought together they react in two possible ways

$$R + T r_R = 50C_A \frac{mol}{m^3 hr}$$

$$S + U r_S = 100C_B \frac{mol}{m^3 hr}$$

$$(7)$$

to give a mixture whose concentration of active components (A,B,R,S,T,U) is $C_{total} = C_{A0} = C_{B0} = 60 \text{ mol/m}^3$.

Find the size of mixed flow reactor needed and the R/S ratio produced for 90% conversion of an equimolar feed of $F_{A0} = F_{B0} = 300$ mol/hr

- II. Starting with pure feed A, consider the first order reaction followed by a zero order reaction $A \xrightarrow{k_1} R \xrightarrow{k_2} S$ taking place in a plug flow reactor. If intermediate R is the desired product, find $C_{R, \max} / C_{A0}$ and the time in which maximum R can be reached. (6)
- III. The following elementary reactions, having $k_0 = 0.025$, $k_1 = 0.2 \text{ min}^{-1}$, $k_2 = 0.4 \text{ lt/mol.min}$ are to be run in four equal sized mixed flow reactors.

The feed is
$$C_{A0} = 1$$
, feed flow rate $v = 100$ lts/min (7)

$$R$$
, $r_R = k_0$
 R , $r_S = k_1 C_A$
 R , $r_T = k_2 C_A^2$

To maximize the fractional yield of S,

- (a) How would you arrange the four mixed flow reactors system?
- (b) With your best system, what would be the volume of your four reactors?