Second Periodical, January 2022
 B.E. (Chemical Engg) III ${ }^{\text {rd }}$ year, ${ }^{\text {th }}$ sem.

Chemical Reaction Engineering - I
M.M. : 20

Time : 60 mins
Note:

- Mention your Roll number, class and name at the top of all the pages/answer sheets. Put your signatures on the right bottom of each sheet.
- Scan all the pages/answer sheets as a single pdf file and upload the same in the Google form of Google Classroom.
- Attempt all questions.
I. When aqueous A and aqueous $B\left(\mathrm{C}_{\mathrm{A} 0}=\mathrm{C}_{\mathrm{B} 0}\right)$ are brought together they react in two possible ways

to give a mixture whose concentration of active components $(\mathrm{A}, \mathrm{B}, \mathrm{R}, \mathrm{S}, \mathrm{T}, \mathrm{U})$ is $\mathrm{C}_{\text {total }}=\mathrm{C}_{\mathrm{A} 0}=\mathrm{C}_{\mathrm{B} 0}=$ $60 \mathrm{~mol} / \mathrm{m}^{3}$.
Find the size of mixed flow reactor needed and the R/S ratio produced for 90% conversion of an equimolar feed of $\mathrm{F}_{\mathrm{A} 0}=\mathrm{F}_{\mathrm{B} 0}=300 \mathrm{~mol} / \mathrm{hr}$
II. Starting with pure feed A, consider the first order reaction followed by a zero order reaction $A \xrightarrow{k_{1}} R \xrightarrow{k_{2}} S$ taking place in a plug flow reactor. If intermediate R is the desired product, find $\mathrm{C}_{\mathrm{R}, \max } / \mathrm{C}_{\mathrm{A} 0}$ and the time in which maximum R can be reached.
III. The following elementary reactions, having $\mathrm{k}_{0}=0.025, \mathrm{k}_{1}=0.2 \mathrm{~min}^{-1}, \mathrm{k}_{2}=0.4 \mathrm{lt} / \mathrm{mol} . \mathrm{min}$ are to be run in four equal sized mixed flow reactors.
The feed is $\mathrm{C}_{\mathrm{A} 0}=1$, feed flow rate $v=100 \mathrm{lts} / \mathrm{min}$

To maximize the fractional yield of S,
(a) How would you arrange the four mixed flow reactors system?
(b) With your best system, what would be the volume of your four reactors?

